Ajinkya Inamdar, Amol Gaikwad, Jayashri Mali, Suvarna Patil, Arati Inamdar


Mesenchymal stem cells (MSCs) possess exceptional abilities of HLA independent universal acceptance, tumor tropism, immunomodulation, ability to be available off-the shelf and flexibility of expression of transgenic proteins whenever desired. MSCs also secrete regenerative and anti-inflammatory factors and MSC-secretome is one of the highly studied emerging therapeutic agents which has led to utilization of conditioned media as a therapeutic agent. MSCs have been studied for the treatment of neurological diseases, cardiovascular ailments, immunological diseases, metabolic disorders and metastatic cancers. It is important to look at the decade long journey of MSCs as therapeutic agents so that the future directions can be confirmed. Takeda pharmaceutical company (after acquisition of TiGenixInc) has successfully received approval in Europe for its first mesenchymal stem cell therapy Alofisel® for the treatment of complex perianal fistulas in Crohn’s disease. Mesenchymal stem cells also offer one of the best platforms for the administration of ex-vivo gene therapy as well as exceptional opportunities for development of multifaceted cell therapies for multiple diseases. In this review article, we have attempted to provide a bird’s eye view of overall development of MSCs as a therapeutic approach for various diseases including cancer. 

Full Text:



Scuteri, A.; Miloso, M.; Foudah, D.; Orciani, M.; Cavaletti, G.; Tredici, G (2011). Mesenchymal stem cells neuronal differentiation ability: a real perspective for nervous system repair? therapy. 6: 82-92.

Friedenstein, A.; Chailakhjan, R.; Lalykina, K (1970). The development of fibroblast colonies in monolayer cultures of guinea‐pig bone marrow and spleen cells. Cell Tissue Kinet. 3: 393-403.

da Silva Meirelles, L.; Fontes, A.M.; Covas, D.T.; Caplan, A (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 20: 419-427.

Caplan, A.I. (1991). Mesenchymal stem cells. J Orthop Res. 9: 641-650.

Inamdar, A.C.; Inamdar, A.A (2013). Mesenchymal stem cell therapy in lung disorders: pathogenesis of lung diseases and mechanism of action of mesenchymal stem cell. Experimental lung research. 39: 315-327.

Kouroupis, D.; Sanjurjo-Rodriguez, C.; Jones, E.; Correa, D (2018). Mesenchymal Stem Cell Functionalization for Enhanced Therapeutic Applications. Tissue Eng Part B Rev 2018.

Charif, N.; Li, Y.; Targa, L.; Zhang, L.; Ye, J.; Li, Y.; Stoltz, J.; Han, H.; de Isla, N (2017). Aging of bone marrow mesenchymal stromal/stem cells: implications on autologous regenerative medicine. Biomed Mater Eng. 28: S57-S63.

Squillaro, T.; Peluso, G.; Galderisi, U (2016). Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 25: 829-848.

Fu, Y.; Karbaat, L.; Wu, L.; Leijten, J.; Both, S.K.; Karperien, M (2017). Trophic effects of mesenchymal stem cells in tissue regeneration. Tissue Eng Part B Rev. 23: 515-528.

Caplan, A.I.; Dennis, J.E (2006). Mesenchymal stem cells as trophic mediators. J Cell Biochem. 98: 1076-1084.

Koç, O.N.; Peters, C.; Aubourg, P.; Raghavan, S.; Dyhouse, S.; DeGasperi, R.; Kolodny, E.H.; BenYoseph, Y.; Gerson, S.L.; Lazarus, H (1999). Bone marrow–derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol. 27:1675-1681.

Lazarus, H.; Haynesworth, S.; Gerson, S.; Rosenthal, N.; Caplan, A (1995). Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant. 16: 557-564.

Ho, I.; Lam, P (2013). Signaling molecules and pathways involved in MSC tumor tropism. HistolHistopathol. 28: 1427-1438.

Park, J.S.; Suryaprakash, S.; Lao, Y.; Leong, K (2015). Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods. 84: 3-16.

Phinney, D (2017). Advancing mesenchymal stem/stromal cells-based therapies for neurologic disease. Neural Regen Res. 12: 60.

Wyse, R.D.; Dunbar, G.L.; Rossignol, J (2014). Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Rossignol J.Int J Mol Sci. 15: 1719-1745.

Deng, P.; Torrest, A.; Pollock, K.; Dahlenburg, H.; Annett, G.; Nolta, J.A.; Fink, K (2016). Clinical trial perspective for adult and juvenile Huntington's disease using genetically-engineered mesenchymal stem cells. Neural Regen Res. 11: 702.

Drela, K.; Siedlecka, P.; Sarnowska, A.; Domanska-Janik, K (2013). Human mesenchymal stem cells in the treatment of neurological diseases. ActaNeurobiolExp. 73: 38-56.

Volkman, R.; Offen, D (2017). Concise review: mesenchymal stem cells in neurodegenerative diseases. Stem Cells. 35: 1867-1880.

Cerri, S.; Greco, R.; Levandis, G.; Ghezzi, C.; Mangione, A.S.; Fuzzati-Armentero, M.-T.; Bonizzi, A.; Avanzini, M.A.; Maccario, R.; Blandini, F (2015). Intracarotid infusion of mesenchymal stem cells in an animal model of parkinson's disease, focusing on cell distribution and neuroprotective and behavioral effects. STEM CELLS Translational Medicine. 4:1073-1085.

Riecke, J.; Johns, K.M.; Cai, C.; Vahidy, F.S.; Parsha, K.; Furr-Stimming, E.; Schiess, M.; Savitz, S (2015). A Meta-analysis of mesenchymal stem cells in animal models of Parkinson's Disease. Stem Cells and Development. 24: 2082-2090.

Jeong, C.H.; Kim, S.M.; Lim, J.Y.; Ryu, C.H.; Jun, J.; Jeun, S (2014). Mesenchymal stem cells expressing brain-derived neurotrophic factor enhance endogenous neurogenesis in an ischemic stroke model. Biomed Res Int. 129-145.

Wang, Q.; Duan, F.; Wang, M.; Wang, X.; Liu, P.; Ma, L (2016). Effect of stem cell-based therapy for ischemic stroke treatment: a meta-analysis. neurosurgery. 146: 1-11.

Quittet, M.-S.; Touzani, O.; Sindji, L.; Cayon, J.; Fillesoye, F.; Toutain, J.; Divoux, D.; Marteau, L.; Lecocq, M.; Roussel, S (2015). Effects of mesenchymal stem cell therapy, in association with pharmacologically active microcarriers releasing VEGF, in an ischaemic stroke model in the rat. Acta Biomater. 15: 77-88.

Li, G.; Yu, F.; Lei, T.; Gao, H.; Li, P.; Sun, Y.; Huang, H.; Mu, Q (2016). Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies. Neural Regen Res. 11: 1015.

Harris, V.K.; Sadiq, S (2009). Disease biomarkers in multiple sclerosis. Therapy. 13: 225-244.

Jumah, M.A.; Abumaree, M (2012). The immunomodulatory and neuroprotective effects of mesenchymal stem cells (MSCs) in experimental autoimmune encephalomyelitis (EAE): a model of multiple sclerosis (MS). Int J Mol Sci. 13: 9298-9331.

Bonafede, R.; Mariotti, R (2017). ALS pathogenesis and therapeutic approaches: the role of mesenchymal stem cells and extracellular vesicles. Front Cell Neurosci. 11: 80.

Vaquero, J.; Zurita, M.; Rico, M.A.; Bonilla, C.; Aguayo, C.; Montilla, J.; Bustamante, S.; Carballido, J.; Marin, E.; Martinez, F (2016). An approach to personalized cell therapy in chronic complete paraplegia: the Puerta de Hierro phase I/II clinical trial. Cytotherapy. 18: 1025-1036.

Uchida, S.; Hayakawa, K.; Ogata, T.; Tanaka, S.; Kataoka, K.; Itaka, K (2016). Treatment of spinal cord injury by an advanced cell transplantation technology using brain-derived neurotrophic factor-transfected mesenchymal stem cell spheroids. Biomaterials.109: 1-11.

Zhao, Q.; Ren, H.; Han, Z (2016). Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. Journal of Cellular Immunotherapy. 2: 3-20.

Aggarwal, S.; Pittenger, M (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 105:1815-1822.

Yi, T.; Song, S (2012). Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch Pharm Res. 35: 213-221.

Klinker, M.W.; Wei, C (2015). Mesenchymal stem cells in the treatment of inflammatory and autoimmune diseases in experimental animal models. World J Stem Cell. 7: 556.

Wang, M.; Yuan, Q.; Xie, L (2018). Mesenchymal Stem Cell-Based Immunomodulation: Properties and Clinical Application. Stem Cells International. 1-12.

Wang, S.; Qu, X.; Zhao, R (2012). Clinical applications of mesenchymal stem cells. Oncology. 5:19.

Tsuchiya, A.; Kojima, Y.; Ikarashi, S.; Seino, S.; Watanabe, Y.; Kawata, Y.; Terai, S (2017). Clinical trials using mesenchymal stem cells in liver diseases and inflammatory bowel diseases. Regeneration. 37:16.

Wang, D.; Niu, L.; Feng, X.; Yuan, X.; Zhao, S.; Zhang, H.; Liang, J.; Zhao, C.; Wang, H.; Hua, B (2017). Long-term safety of umbilical cord mesenchymal stem cells transplantation for systemic lupus erythematosus: a 6-year follow-up study. Clin Exp Med. 17: 333-340.

Rhijn-Brouwer, F.; Gremmels, H.; Fledderus, J.; Verhaar, M (2018). Mesenchymal Stromal Cell Characteristics and Regenerative Potential in Cardiovascular Disease: Implications for Cellular Therapy. Cell Transplant. 27:765-785.

Bagno, L.; Hatzistergos, K.E.; Balkan, W.; Hare, J (2018). Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges. MolTher. 26: 1610-1623.

Bian, S.; Zhang, L.; Duan, L.; Wang, X.; Min, Y.; Yu, H (2014). Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berl). 92: 387-397.

Guijarro, D.; Lebrin, M.; Lairez, O.; Bourin, P.; Piriou, N.; Pozzo, J.; Lande, G.; Berry, M.; Le Tourneau, T.; Cussac, D (2016). Intramyocardial transplantation of mesenchymal stromal cells for chronic myocardial ischemia and impaired left ventricular function: Results of the MESAMI 1 pilot trial. Int J Cardiol. 209: 258-265.

Zhou, L.; Lin, Q.; Wang, P.; Yao, L.; Leong, K.; Tan, Z.; Huang, Z (2017). Enhanced neuroprotective efficacy of bone marrow mesenchymal stem cells co-overexpressing BDNF and VEGF in a rat model of cardiac arrest-induced global cerebral ischemia. Cell Death and Disease. 8: e2774.

Timmers, L.; Lim, S.K.; Hoefer, I.E.; Arslan, F.; Lai, R.C.; van Oorschot, A.A.; Goumans, M.J.; Strijder, C.; Sze, S.K.; Choo, A (2011). Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res. 6:206-214.

Luo, L.; Tang, J.; Nishi, K.; Yan, C.; Dinh, P.-U.; Cores, J.; Kudo, T.; Zhang, J.; Li, T.-S.; Cheng, K (2017). Fabrication of synthetic mesenchymal stem cells for the treatment of acute myocardial infarction in mice. Circulation Research. 120:1768-1775.

Butler, J.; Epstein, S.E.; Greene, S.J.; Quyyumi, A.A.; Sikora, S.; Kim, R.J.; Anderson, A.S.; Wilcox, J.E.; Tankovich, N.I.; Lipinski, M (2017). Intravenous Allogeneic Mesenchymal Stem Cells for Nonischemic CardiomyopathyNovelty and Significance: Safety and Efficacy Results of a Phase II-A Randomized Trial. Circ Res. 120: 332-340.

Carmona, M.D.; Cañadillas, S.; Romero, M.; Blanco, A.; Nogueras, S.; Herrera, C (2017). Intramyocardial bone marrow mononuclear cells versus bone marrow–derived and adipose mesenchymal cells in a rat model of dilated cardiomyopathy. Cytotherapy. 19:947-961.

Hare, J.M.; DiFede, D.L.; Rieger, A.C.; Florea, V.; Landin, A.M.; El-Khorazaty, J.; Khan, A.; Mushtaq, M.; Lowery, M.H.; Byrnes, J (2017). Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM trial. J Am Coll Cardiol. 69:526-537.

Inamdar, A.; Inamdar, A (2016). Heart failure: diagnosis, management and utilization. J. Clin. Med. 5: 62.

Gnecchi, M.; Zhang, Z.; Ni, A.; Dzau, V (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res. 103:1204-1219.

Hatzistergos, K.E.; Quevedo, H.; Oskouei, B.N.; Hu, Q.; Feigenbaum, G.S.; Margitich, I.S.; Mazhari, R.; Boyle, A.J.; Zambrano, J.P.; Rodriguez, J (2016). Bone Marrow Mesenchymal Stem Cells Stimulate Cardiac Stem Cell Proliferation and DifferentiationNovelty and Significance. Circ. Res. 107: 913-922.

J Psaltis, P.; Schwarz, N.; Toledo-Flores, D.; J Nicholls, S (2016). Cellular therapy for heart failure. CurrCardiol Rev. 12: 195-215.

Hotamisligil, G (2006). Inflammation and metabolic disorders. Nature. 444: 860.

Figliuzzi, M.; Cornolti, R.; Perico, N.; Rota, C.; Morigi, M.; Remuzzi, G.; Remuzzi, A.; Benigni, A (2009). Bone marrow–derived mesenchymal stem cells improve islet graft function in diabetic rats. In Proceedings of Transplantation proceedings; Transplant Proc. 47: 1797-1800.

Marappagounder, D.; Somasundaram, I.; Dorairaj, S.; Sankaran, R (2013). Differentiation of mesenchymal stem cells derived from human bone marrow and subcutaneous adipose tissue into pancreatic islet-like clusters in vitro. Cellular & Molecular Biology Letters. 18:75.

Scuteri, A.; Monfrini, M (2018). Mesenchymal Stem Cells as New Therapeutic Approach for Diabetes and Pancreatic Disorders. Int J Mol Sci. 19: 2783.

Kadam, S.; Govindasamy, V.; Bhonde, R (2012). Generation of functional islets from human umbilical cord and placenta derived mesenchymal stem cells. Methods Mol Biol. 879: 291-313.

Nagaishi, K.; Mizue, Y.; Chikenji, T.; Otani, M.; Nakano, M.; Saijo, Y.; Tsuchida, H.; Ishioka, S.; Nishikawa, A.; Saito, T (2017). Umbilical cord extracts improve diabetic abnormalities in bone marrow-derived mesenchymal stem cells and increase their therapeutic effects on diabetic nephropathy. Sci Rep. 7: 8484.

Cai, J.; Wu, Z.; Xu, X.; Liao, L.; Chen, J.; Huang, L.; Wu, W.; Luo, F.; Wu, C.; Pugliese, A (2016). Umbilical cord mesenchymal stromal cell with autologous bone marrow cell transplantation in established type 1 diabetes: a pilot randomized controlled open-label clinical study to assess safety and impact on insulin secretion. Diabetes Care. 39: 149-157.

Alfaifi, M.; Eom, Y.W.; Newsome, P.N.; Baik, S (2018). Mesenchymal stromal cell therapy for liver diseases. J Hepatol. 68: 1272-1285.

Tao, Y.; Wang, M.; Chen, E.; Tang, H (2018). Stem Cells Transplantation in the Treatment of Patients with Liver Failure. Curr Stem Cell Res Ther. 13: 193-201.

Choi, S.W.; Reddy, P(2014). Current and emerging strategies for the prevention of graft-versus-host disease. Nat Rev ClinOncol. 11: 536.

Magenau, J.; Runaas, L.; Reddy, P(2016). Advances in understanding the pathogenesis of graft‐versus‐host disease. Br J Haematol. 173: 190-205.

Meuleman, N.; Tondreau, T.; Ahmad, I.; Kwan, J.; Crokaert, F.; Delforge, A.; Dorval, C.; Martiat, P.; Lewalle, P.; Lagneaux, L (2009). Infusion of mesenchymal stromal cells can aid hematopoietic recovery following allogeneic hematopoietic stem cell myeloablative transplant: a pilot study. Stem Cells Dev. 18: 1247-1252.

Lazarus, H.M.; Koc, O.N.; Devine, S.M.; Curtin, P.; Maziarz, R.T.; Holland, H.K.; Shpall, E.J.; McCarthy, P.; Atkinson, K.; Cooper, B (2005). Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biology of blood and marrow transplantation. 11: 389-398, doi:10.1016/j.bbmt.2005.02.001.

Tisato, V.; Naresh, K.; Girdlestone, J.; Navarrete, C.; Dazzi, F (2007). Mesenchymal stem cells of cord blood origin are effective at preventing but not treating graft-versus-host disease. Leukemia. 21: 1992.

Lin, Y.; Hogan, W.J (2011). Clinical Application of Mesenchymal Stem Cells in the Treatment and Prevention of Graft-versus-Host Disease. Advances in hematology. 2011: 1-17, doi:10.1155/2011/427863.

Krampera, M.; Cosmi, L.; Angeli, R.; Pasini, A.; Liotta, F.; Andreini, A.; Santarlasci, V.; Mazzinghi, B.; Pizzolo, G.; Vinante, F (2006). Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem cells. 24: 386-398, doi:10.1634/stemcells.2005-0008.

Polchert, D.; Sobinsky, J.; Douglas, G.; Kidd, M.; Moadsiri, A.; Reina, E.; Genrich, K.; Mehrotra, S.; Setty, S.; Smith, B (2008). IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. European journal of immunology. 38:1745-1755, doi:10.1002/eji.200738129.

Kuzmina, L.A.; Petinati, N.A.; Parovichnikova, E.N.; Lubimova, L.S.; Gribanova, E.O.; Gaponova, T.V.; Shipounova, I.N.; Zhironkina, O.A.; Bigildeev, A.E.; Svinareva, D.A (2012). Multipotent Mesenchymal Stromal Cells for the Prophylaxis of Acute Graft-versus-Host Disease-A Phase II Study. Stem cells international. 2012: 968213, doi:10.1155/2012/968213.

Weng, J.Y.; Du, X.; Geng, S.X.; Peng, Y.W.; Wang, Z.; Lu, Z.S.; Wu, S.J.; Luo, C.W.; Guo, R.; Ling, W (2010). Mesenchymal stem cell as salvage treatment for refractory chronic GVHD. Bone marrow transplantation. 45: 1732-1740, doi:10.1038/bmt.2010.195.

Munneke, J.M.; Spruit, M.J.; Cornelissen, A.S.; van Hoeven, V.; Voermans, C.; Hazenberg, M.D (2016). The Potential of Mesenchymal Stromal Cells as Treatment for Severe Steroid-Refractory Acute Graft-Versus-Host Disease: A Critical Review of the Literature. Transplantation. 100:2309-2314, doi:10.1097/tp.0000000000001029.

Sheridan, C (2018). First off-the-shelf mesenchymal stem cell therapy nears European approval. Nature biotechnology. 36: 212-214, doi:10.1038/nbt0318-212a.

Panés, J.; Van Assche, G.; Colombel, J.; Reinisch, W.; Baumgart, D.; Dignass, A.; Nachury, M.; Ferrante, M.; Kazemi-Shirazi, L.; Grimaud, J (2016). Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn's disease: a phase 3 randomised, double-blind controlled trial. The Lancet. Sep 24: 388(10051): 1281-1290.

Pereira, T.; Ivanova, G.; Caseiro, A.R.; Barbosa, P.; Bartolo, P.J.; Santos, J.D.; Luis, A.L.; Mauricio, A.C (2014). MSCs conditioned media and umbilical cord blood plasma metabolomics and composition. PloS one. 9: e113769, doi:10.1371/journal.pone.0113769.

Pawitan, J.A (2014). Prospect of stem cell conditioned medium in regenerative medicine. BioMed research international. 2014: 965849, doi:10.1155/2014/965849.

Vizoso, F.J.; Eiro, N.; Cid, S.; Schneider, J.; Perez-Fernandez, R (2017). Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. International journal of molecular sciences. 18: doi:10.3390/ijms18091852.

Schafer, R.; Spohn, G.; Baer, P.C (2016). Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Can Preconditioning Strategies Improve Therapeutic Efficacy? Transfusion medicine and hemotherapy : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie. 43: 256-267, doi:10.1159/000447458.

Saparov, A.; Ogay, V.; Nurgozhin, T.; Jumabay, M.; Chen, W.C (2016). Preconditioning of Human Mesenchymal Stem Cells to Enhance Their Regulation of the Immune Response. Stem cells international. 2016: 3924858, doi:10.1155/2016/3924858.

Prockop, D.J.; Kota, D.J.; Bazhanov, N.; Reger, R.L (2010). Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). Journal of cellular and molecular medicine. 14:2190-2199, doi:10.1111/j.1582-4934.2010.01151.x.

Maguire, G (2013). Stem cell therapy without the cells. Communicative & integrative biology. 6: e26631, doi:10.4161/cib.26631.

Terunuma, K.; Terunuma, A.; Deng, X.; Watanabe, K (2017). Conditioned Medium of Human Immortalized Mesenchymal Stem Cells as a Novel Therapeutic Tool to Repair Damaged Tissues. Journal of Neuroscience and Neuroengineering. 2017: 9-12.

Fritz, V.; Jorgensen, C (2008). Mesenchymal stem cells: an emerging tool for cancer targeting and therapy. Current stem cell research & therapy. 3: 32-42.

Sordi, V.; Malosio, M.L.; Marchesi, F.; Mercalli, A.; Melzi, R.; Giordano, T.; Belmonte, N.; Ferrari, G.; Leone, B.E.; Bertuzzi, F (2005). Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood. 106: 419-427, doi:10.1182/blood-2004-09-3507.

Wynn, R.F.; Hart, C.A.; Corradi-Perini, C.; O'Neill, L.; Evans, C.A.; Wraith, J.E.; Fairbairn, L.J.; Bellantuono, I (2004). A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood. 104:2643-2645, doi:10.1182/blood-2004-02-0526.

Ringe, J.; Strassburg, S.; Neumann, K.; Endres, M.; Notter, M.; Burmester, G.R.; Kaps, C.; Sittinger, M (2007). Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. Journal of cellular biochemistry. 101: 135-146, doi:10.1002/jcb.21172.

Ponte, A.L.; Marais, E.; Gallay, N.; Langonne, A.; Delorme, B.; Herault, O.; Charbord, P.; Domenech, J (2007). The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem cells (Dayton, Ohio). 25: 1737-1745, doi:10.1634/stemcells.2007-0054.

Chulpanova, D.S.; Kitaeva, K.V.; Tazetdinova, L.G.; James, V.; Rizvanov, A.A.; Solovyeva, V.V (2018). Application of Mesenchymal Stem Cells for Therapeutic Agent Delivery in Anti-tumor Treatment. Frontiers in pharmacology. 9: 259, doi:10.3389/fphar.2018.00259.

Almasan, A.; Ashkenazi, A (2003). Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine & growth factor reviews. 14: 337-348.

Kelley, S.K.; Ashkenazi, A (2004). Targeting death receptors in cancer with Apo2L/TRAIL. Current opinion in pharmacology. 4: 333-339, doi:10.1016/j.coph.2004.02.006.

Menon, L.G.; Kelly, K.; Yang, H.W.; Kim, S.K.; Black, P.M.; Carroll, R.S (2009). Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy. Stem cells (Dayton, Ohio). 27: 2320-2330, doi:10.1002/stem.136.

Choi, S.A.; Hwang, S.K.; Wang, K.C.; Cho, B.K.; Phi, J.H.; Lee, J.Y.; Jung, H.W.; Lee, D.H.; Kim, S.K (2011). Therapeutic efficacy and safety of TRAIL-producing human adipose tissue-derived mesenchymal stem cells against experimental brainstem glioma. Neuro-oncology. 13: 61-69, doi:10.1093/neuonc/noq147.

Xia, X.; Ji, T.; Chen, P.; Li, X.; Fang, Y.; Gao, Q.; Liao, S.; You, L.; Xu, H.; Ma, Q (2011). Mesenchymal stem cells as carriers and amplifiers in CRAd delivery to tumors. Molecular cancer. 10: 134, doi:10.1186/1476-4598-10-134.

Mader, E.K.; Butler, G.; Dowdy, S.C.; Mariani, A.; Knutson, K.L.; Federspiel, M.J.; Russell, S.J.; Galanis, E.; Dietz, A.B.; Peng, K.W (2013). Optimizing patient derived mesenchymal stem cells as virus carriers for a phase I clinical trial in ovarian cancer. Journal of translational medicine. 11: 20, doi:10.1186/1479-5876-11-20.

Shah, K (2016). Stem cell-based therapies for tumors in the brain: are we there yet? Neuro-oncology. 18: 1066-1078, doi:10.1093/neuonc/now096.

Matuskova, M.; Kozovska, Z.; Toro, L.; Durinikova, E.; Tyciakova, S.; Cierna, Z.; Bohovic, R.; Kucerova, L (2015). Combined enzyme/prodrug treatment by genetically engineered AT-MSC exerts synergy and inhibits growth of MDA-MB-231 induced lung metastases. Journal of experimental & clinical cancer research : CR. 34: 33, doi:10.1186/s13046-015-0149-2.

Cocce, V.; Farronato, D.; Brini, A.T.; Masia, C.; Gianni, A.B.; Piovani, G.; Sisto, F.; Alessandri, G.; Angiero, F.; Pessina, A (2017). Drug Loaded Gingival Mesenchymal Stromal Cells (GinPa-MSCs) Inhibit In Vitro Proliferation of Oral Squamous Cell Carcinoma. Scientific reports. 7: 9376, doi:10.1038/s41598-017-09175-4.

Saulite, L.; Pleiko, K.; Popena, I.; Dapkute, D.; Rotomskis, R.; Riekstina, U (2018). Nanoparticle delivery to metastatic breast cancer cells by nanoengineered mesenchymal stem cells. Beilstein journal of nanotechnology. 9: 321-332, doi:10.3762/bjnano.9.32.

Pascucci, L.; Cocce, V.; Bonomi, A.; Ami, D.; Ceccarelli, P.; Ciusani, E.; Vigano, L.; Locatelli, A.; Sisto, F.; Doglia, S (2014). Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. Journal of controlled release : official journal of the Controlled Release Society. 192: 262-270, doi:10.1016/j.jconrel.2014.07.042.

He, N.; Kong, Y.; Lei, X.; Liu, Y.; Wang, J.; Xu, C.; Wang, Y.; Du, L.; Ji, K.; Wang, Q (2018). MSCs inhibit tumor progression and enhance radiosensitivity of breast cancer cells by down-regulating Stat3 signaling pathway. Cell death & disease. 9: 1026, doi:10.1038/s41419-018-0949-3.


  • There are currently no refbacks.